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Abstract In augmentative biological control (ABC),
invertebrate and microbial organisms are seasonally

released in large numbers to reduce pests. Today it is

applied on more than 30 million ha worldwide. Europe
is the largest commercial market for invertebrate

biological control agents, while North America has the

largest sales of microbials. A strong growth in use of
ABC, particularly of microbial agents, is taking place

in Latin America, followed by Asia. The current

popularity of ABC is due to (1) its inherent positive

characteristics (healthier for farm workers and persons
living in farming communities, no harvesting interval

or waiting period after release of agents, sustainable as

there is no development of resistance against arthro-
pod natural enemies, no phytotoxic damage to plants,

better yields and a healthier product, reduced pesticide

residues [well below the legal Maximum Residue
Levels (MRLs)], (2) professionalism of the biological

control industry (inexpensive large scale mass pro-

duction, proper quality control, efficient packaging,
distribution and release methods, and availability of

many ([440 species) control agents for numerous

pests), (3) a number of recent successes showing how
biological control can save agricultural production

when pesticides fail or are not available, (4) several
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non-governmental organizations (NGOs), consumers,

and retailers demanding pesticide residues far below

the legal MRLs, and (5) policy developments in
several regions of the world aimed at reduction and

replacement of synthetic pesticides by more sustain-

able methods of pest management. We are convinced,
however, that ABC can be applied on a much larger

area than it is today. We plead in the short term for a

pragmatic form of agriculture that is adaptable, non-
dogmatic and combines the sustainability gain from all

types of agriculture and pest management methods.

We then propose to move to ‘‘conscious agriculture’’,
which involves participation of all stakeholders in the

production and consumer chain, and respects the

environment and resource availability for future
generations. Were ‘‘conscious agriculture’’ to be

considered a serious alternative to conventional farm-

ing, ABC would face an even brighter future.

Keywords Augmentative biological control ! Pest
control policies ! Benefits of biological control !
Market developments in biological control !
Worldwide use of biological control ! Integrated pest

management ! Conscious agriculture

Introduction

Politicians, policy makers, retailers, consumers, grow-

ers and grower organizations are increasingly asking

for and speaking about biological control. Hardly a
day passes during which we, the authors of this paper,

do not receive a question on how to control a certain

pest, disease or weed, where to obtain biological
control agents, and how to stimulate use of this

environmentally safe pest management method. The

European Union (EU) has been advocating the use of
biological control since 2009 in its Sustainable Use of

Pesticides Directive (EC 2009). The President of

China recently launched a ‘‘National research program
on reduction in chemical pesticides and fertilizers in

China’’ involving more than 340 million US$, indi-

cating a need for the development and application of
non-chemical control methods. Together, the authors

of this paper have been working in the field of

augmentative biological control (ABC) for more than
150 years. We noted a hesitant start to ABC in the

1970s, then a burst of activity took place over the next

25 years. During the first decade of the twenty-first

century fewer new biological control agents came to
the market, but during the second decade we again

experienced a new phase with strong growth in both

the development of new agents and a market for
biological control (van Lenteren 2012; Tables 1, 2 and

3 in this paper).

Simply said, biological control is the use of a
population of one organism to reduce the population of

another organism. Biological control has been in use

for at least 2000 years, but modern use started at the
end of the nineteenth century (DeBach 1964; van

Lenteren and Godfray 2005). Four different types of

biological control are known: natural, conservation,
classical, and augmentative biological control (Eilen-

berg et al. 2001; Cock et al. 2010). Natural biological

control is an ecosystem service (Millennium Ecosys-
tem Assessment 2005) whereby pest organisms are

reduced by naturally occurring beneficial organisms.

This occurs in all of the world’s ecosystems without
any human intervention, and, in economic terms, is the

greatest contribution of biological control to agricul-

ture (Waage and Greathead 1988). Conservation
biological control consists of human actions that

protect and stimulate the performance of naturally

occurring natural enemies. This form of biological
control is currently receiving a lot of attention for pest

control. Conservation biological control of plant

diseases is focused on the role of the natural micro-
biome in suppressing plant diseases in soil and crop

residues, and of the natural microbiome in and on

plants in providing resilience to pest and pathogen
infection (Mendes et al. 2011; Weller et al. 2002). In

classical biological control, natural enemies are col-

lected in an exploration area (usually the area of origin
of the pest) and then released in areas where the pest is

invasive, often resulting in permanent pest population

reduction and enormous economic benefits (see Cock
et al. 2010). As this was the first type of biological

control deliberately and widely practiced, it is called

‘‘classical’’ biological control (DeBach 1964). In
augmentative biological control (ABC), natural ene-

mies (parasitoids, predators or micro-organisms) are
mass-reared for release in large numbers either to

obtain immediate control of pests in crops with a short

production cycle (inundative biological control) or for
control of pests during several generations in crops

with a long production cycle (seasonal inoculative

biological control) (Cock et al. 2010; Lorito et al.
2010; Parnell et al. 2016; van Lenteren 2012).
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This paper is focussed on augmentative biological
control (ABC). It has been applied with success for

more than 100 years in several cropping systems (Gurr

and Wratten 2000; Cock et al. 2010). In this paper, we
illustrate (1) the important role ABC is playing today,

(2) how many biological control agents are commer-

cially available and against which pests they are
applied, (3) in what way ABC can result in cleaner,

greener, healthier and more sustainable agriculture

through policy measures and regulations, and, finally,
(4) the need for a type of agriculture that respects the

environment and optimizes use of ecosystem services.

Note: in this paper we often use the word ‘pest’ as
defined by FAO/IIPC (1997), which includes animal

pests, weeds and diseases.

Where is augmentative biological control currently
applied?

Large scale regular releases and mass production of

natural enemies means that ABC is often a commercial

activity (van Lenteren 2012). ABC is thought to have
been used for the first time in China around 300 AD

(van Lenteren and Godfray 2005). Modern ABC

started in the 1880s with the use of the insect pathogen
Metarhizium anisopliae by Metchnikoff in Russia for

control of beetles in various crops (MacBain Cameron

1973). Today, ABC is applied in many areas of
agriculture, such as fruit and vegetable crops, cereals,

maize, cotton, sugarcane, soybean, grapes and many

greenhouse crops (Table 1), and is often part of an

Table 1 Worldwide use of major augmentative biological control programs (after van Lenteren and Bueno 2003), with updates and
supported with references when large differences in areas under control existed between 2003 and 2016

Natural enemy Pest and crop Area under control (in ha)

Trichogramma spp. Lepidopteran pests in vegetables, cereals, cotton 10 million, former USSRa

Trichoderma spp. Soil diseases various crops 5 million, Brazil, Europeb

Trichogramma spp. Lepidopteran pests in various crops, forests 4 million, Chinac

Cotesia spp. Sugarcane borers 3.6 million, South America, Chinad

Metarhizium anisoplae Lepidopteran pests in sugar cane 2 million, Brazile

Trichogramma spp. Lepidopteran pests in corn, cotton, sugarcane, tobacco 1.5 million, Mexico

Trichogramma spp. Lepidopteran pests in cereals, cotton, sugarcane, pastures 1.2 million, South America

AgMNPV Soybean caterpillar in soybean 1 million, Brazil

Beauvaria bassiana Coffee berry borer in coffee, whitefly in several crops 1 million, Brazilf

Entomopathogenic fungi Coffee berry borer in coffee 0.55 million, Colombiag

Trichogramma spp. Lepidopteran pests in cereals and rice 0.3 million, SouthEast Asia

Trichogramma spp. Lepidopteran pests in sugar cane and tomato 0.3 million, NorthEast Africa

Predatory mites Spider mites in greenhouses, fruit orchards, tea and cotton 0.07 million Chinah

Trichogramma spp. Ostrinia nubilalis in corn 0.05 million, Europe

Orgilus sp. Pine shooth moth, pine plantations 0.05 million, Chile

[30 spp. of nat. enemies Many pests in greenhouses and interior plant-scapes 0.05 million, worldwide

Egg parasitoids Soybean stinkbugs in soybean 0.03 million, South America

Five spp. of nat. enemies Lepidoptera, Hemiptera, spider mites in orchards 0.03 million, Europe

a Recent data about use of Trichogramma in Russia were not available
b Bettiol W and Pedrazzoli D, personal communication 2016
c Liu et al. (2014)and Wang et al. (2014)
d Parra JRP and Pedrazzoli D, personal communication 2016
e Bettiol W and Pedrazzoli D, personal communication 2016
f Bettiol W and Parra JRP, personal communication 2016
g Aristizabal et al. (2016)
h Yang et al. (2014)
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Table 2 Additional natural enemy species to the table of van Lenteren (2012), ‘‘Commercial availability of invertebrate natural
enemies used worldwide in augmentative biological control, with region of use, year of first use and market value.’’

Natural enemy Classification Region where usedb Target(s) Year of first
use

Market
valuea

Adalia spp. Coleoptera Latin America Aphids 1941 M

Ageniaspis citricola Hymenoptera Latin America Lepidopterans 1998 M

Allotropa convexifrons Hymenoptera Europe Pseudococcids 2005 S

Allotropa musae Hymenoptera Europe Pseudococcids 2006 S

Amblydromalus limonicus Acari Europe Thrips, whiteflies,
tarsonomids

2013 L

Amblyseius aizawai Acari Asia Mites 1992 M

Amblyseius longispinosus Acari Asia Mites 1990 S

Amblyseius makuwa Acari Asia Mites 1991 S

Amblyseius mckenziei Acari Europe Mites 1985 S

Amblyseius nicholsi Acari Asia Mites in citrus 1980 L

Amblyseius spp. Acari Australia Mites in citrus 1990 L

Anagyrus kamali Hymenoptera Latin America Pseudococcids 1990 S

Anagyrus sinope Hymenoptera Europe Pseudococcids 2006 S

Anaphes nitens Hymenoptera Europe Coleopterans 1995 S

Anastatus japonicus Hymenoptera Asia Hemipterans 1970 L

Anastatus sp. Hymenoptera Asia, Australia Hemipterans 2010 S

Anastatus tenuipes Hymenoptera North America Cockroaches 1970 S

Androlaelaps casalis Acari Europe Mites on vertebrates 2008 M

Anisopteromalus calandrae Hymenoptera Europe, North
America

Coleopterans 1990 S

Aphidius sp. Hymenoptera Latin America Aphids 1980 S

Billaea claripalpis Diptera Latin America Lepidopterans 1976 S

Bracon brevicornis Hymenoptera Europe Lepidopterans 2000 S

Cephalonomia tarsalis Hymenoptera Europe Coleopterans 1995 S

Ceraeochrysa cincta Neuroptera Latin America Aphids 1990 S

Ceraeochrysa smithi Neuroptera Latin America Aphids 1995 S

Cheyletus eruditus Acari Europe Vertebrate mites 2004 S

Chouioia cunea Hymenoptera Asia Lepidopterans 2005 M

Chrysoperla asoralis Neuroptera Latin America Aphids 1990 S

Chrysoperla cinta Neuroptera Latin America Aphids 1990 S

Chrysoperla comanche Neuroptera North America Aphids 1990 M

Chrysoperla lucasina Neuroptera Europe Aphids 1995 M

Chrysoperla (=Chrysopa) sinica Neuroptera Asia Aphids, lepidopterans 2000 M

Coccidophilus citricola Coleoptera Latin America,
Europe

Diaspidids 1982 S

Coccidoxenoides peregrinus Hymenoptera North and Latin
America

Diaspidids,
pseudococcids

2006 S

Comperia merceti Hymenoptera North America Cockroaches 1980 S

Copidosoma sp. Hymenoptera Latin America Lepidopterans 1995 S

Cotesia marginiventris Hymenoptera North America Lepidopterans 1990 S

Cotesia plutellae Hymenoptera North America lepidopterans 1995 M

Cryptolaemus montrouzieri Coleoptera Europe, South
America

Mealybugs 1927 M

J. C. van Lenteren et al.
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Table 2 continued

Natural enemy Classification Region where usedb Target(s) Year of first
use

Market
valuea

Cycloneda limbifer Colecoptera Europe Aphids 1990 S

Diachasmimorpha longicaudata Hymenoptera Latin America Dipterans 1990 M

Dibrachys cavus Hymenoptera Europe Dipterans 1990 S

Dirhinus giffardii Hymenoptera Latin America Dipterans 1990 S

Elasmus albipennis Hymenoptera Europe Lepidopterans 1995 S

Encarsia perniciosi Hymenoptera Europe Scales 1932 L

Encarsia sp. Hymenoptera Latin America Whiteflies 1995 S

Ephedrus cerasicola Hymenoptera Europe Aphids 2008 L

Ephedrus plagiator Hymenoptera Europe Aphids 2010 M

Eretmocerus hayati Hymenoptera Australia Whiteflies 2006 M

Eriopsis connexa Coleoptera Latin America Coccids, Aphids,
hemipterans

2000 S

Eucanthecona furcellata Hemiptera Asia Aphids, lepidopterans 1996 S

Euseius gallicus Acari Europe Thrips, whitefly 2013 M

Euseius ovalis Acari Europe Thrips, whitefly 2008 M

Euseius stipulatus Acari Europe, South
America

Mites 2006 M

Forficula sp. Dermaptera Asia Lepidopterans 2010 S

Galendromus (Metaseiulus)
annectens

Acari North America Mites 1990 M

Galendromus (Metaseiulus)
helveolus

Acari North America Mites 1999 S

Galendromus (Metaseiulus) pyri Acari North America Mites 1995 L

Galeolaelaps gillespieii Acari North America Dipterans, thrips 2010 L

Geocoris punctipes Hemiptera North and Latin
America

Lepidopterans, whiteflies 2000 S

Gynaeseius liturivorus Acari Asia Thrips, whitefly 2013 M

Habrobracon sp. Hymenoptera Latin America Lepidopterans 1986 S

Haplothrips brevitubus Thysanoptera Asia Thrips 2010 S

Heterorhabditis indica Nematoda North America Coleopterans, dipterans 2000 S

Hydrotaea aenescens Diptera Europe, North
America

Dipterans 2000 S

Lariophagus distinguendus Hymenoptera Europa Coleopterans 1995 S

Leis (Harmonia) dimidiata Coleoptera Europe Aphids 1995 S

Leminia biplagiata Coleoptera Asia Aphids, whiteflies 1998 S

Leptomastix algirica Hymenoptera Europe Pseudococcids 2011 S

Leptopilina heterotoma Hymenoptera Europe Dipterans 2007 S

Lydella jalisco Diptera Latin America Lepidopterans 1996 S

Macrocentrus prolificus Hymenoptera Latin America Lepidopterans 2005 S

Mallada basalis Neuroptera Asia Aphids, thrips, etc. 2000 M

Mantis religiosa Mantodea North America Many pests 1970 S

Megastigmus brevivalvus Hymenoptera Australia Hymenopterans 1995 S

Megastigmus trisulcus Hymenoptera Australia Hymenopterans 1995 S

Menochilus sexmaculatus Coleoptera Asia Aphids, whiteflies 2010 S

Metagonistylum minense Diptera Latin America Lepidopterans 1980 S

Biological control using invertebrates and microorganisms
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Table 2 continued

Natural enemy Classification Region where usedb Target(s) Year of first
use

Market
valuea

Micromus variegatus Neuroptera North America Aphids 2010 L

Necremnus artynes Hymenoptera Europe Lepidopterans 2010 S

Neodryinus typhlocybae Hymenoptera Europe Planthoppers 2007 S

Neoseiulus (Amblyseius) barkeri Acari Europe, Latin
America

Thrips 1981 S

Neoseiulus longispinosus Acari Latin America Mites 2005 S

Nephus quadrimaculatus Coleoptera Europe Aphids, pseudococcids 2005 S

Olla abdominalis (=v-nigrans) Coleoptera North and Latin
America

Aphids, hemipterans 1990 S

Orius sauteri Hemiptera Asia Aphids, mites, thrips, 2005 M

Orius vicinus Hemiptera New Zealand Thrips, aphids, mites 2010 M

Pentalitomastix plethoricus Hymenoptera North America Lepidopterans 1980 S

Peristenus relictus Hymenoptera North America Hemipterans 2001 L

Podisus sp. Hemiptera Latin America Lepidopterans 1985 S

Praon sp. Hymenoptera Latin America Aphids 1980 S

Propylaea japonica Coleoptera Asia Aphids 2014 S

Propylaea
quatuordecimpunctata

Coleoptera Europe Aphids 1995 S

Scymnus loewii Coleoptera New Zealand Aphids 1995 S

Sphaerophoria rueppellii Diptera Europe Aphids 2015 S

Stagmomantis carolina Mantodea North America Many pest species 1990 S

Steinernema scapterisci Nematoda North America Orthopterans 1990 S

Stethorus punctipes Coleoptera North America Mites 1980 S

Stethorus sp. Coleoptera Latin America Mites 1995 S

Sympherobius barberi Neuroptera North America Pseudococcids, aphids,
etc.

1980 L

Sympherobius maculipennis Neuroptera Latin America Pseudococcids 1990 S

Sympherobius sp. Neuroptera Latin America Whiteflies 1995 S

Synopeas sp. Hymenoptera Latin America Dipterans 1990 S

Tamarixia radiata Hymenoptera Latin America Psyllids 2010 L

Tamarixia triaozae Hymenoptera North and Latin
America

Psyllids 2001 L

Telenomus podisi Hymenoptera Latin America Hemipterans 2004 M

Telenomus sp. Hymenoptera Latin America Lepidopterans 1990 S

Tenodera aridifolia sinensis Mantodea North America Many pest species 1990 S

Tetrastichus hagenowi Hymenoptera Asia Cockroaches 1980 S

Tetrastichus howardii Hymenoptera Latin America Lepidopterans 1995 S

Thyphiodromus pyri Acari Latin America Mites 2000 M

Transeius (=Amblyseius)
montdorensis

Acari Europe Thrips, whiteflies,
tarsonomids

2004 S

Trichogramma achaeae Hymenoptera Europe Lepidopterans 2012 M

Trichogramma bactrae Hymenoptera Latin America, Asia Lepidopterans 1980 M

Trichogramma confusum
(=chilonus)

Hymenoptera Asia, Australia Lepidopterans 1970 L

Trichogramma embryophagum Hymenoptera Europe Lepidopterans 1994 M

Trichogramma euproctidis Hymenoptera Europe Lepidopterans 1960 M
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Table 2 continued

Natural enemy Classification Region where usedb Target(s) Year of first
use

Market
valuea

Trichogramma fuentesi Hymenoptera Latin America Lepidopterans 1990 S

Trichogramma japonicum Hymenoptera Asia Lepidopterans 1990 S

Trissolcus basalis Hymenoptera Latin America Hemipterans 1995 S

Typhlodromus occidentalis Acari Australia Mites 1970 M

Wollastoniella rotunda Hemiptera Asia Thrips 2005 S

Xenostigmus bifasciatus Hymenoptera Latin America Aphids 2002 S

Xylocoris flavipes Hemiptera North America Coleopterans 2000 S

A table listing all species used in biological control of invertebrates is provided as Supplementary electronic information
a Market value: L large (hundred thousand to millions of individuals sold per week), M medium (ten thousand to a hundred thousand
individuals sold per week), S small (hundreds to a few thousands individuals sold per week) In case of doubt, when numbers sold per
week could not be estimated from published material, the market value was rated as S
b Africa North = North of Sahara; Africa South = South of Sahara; North America = Canada ? USA; Latin America = the
Caribbean, Central and South America

Table 3 Registered microbial biological control agents for augmentative biological control in Australia (AUS), Brazil (BR), Canada
(CA), European Union (EU), Japan (J), New Zealand (NZ) and United States of America (USA)

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Adoxophyes orana GV V-0001 V EU, J Summer fruit tortrix

Agrobacterium radiobacter B NZ (1975) Crown gall

Agrobacterium radiobacter K1026 B USA Crown gall

Agrobacterium radiobacter K84 B CA, J, USA Crown gall

Alternaria destruens 059 F USA Cuscuta spp. (dodder)

Ampelomyces quisqualis AQ10 F EU, USA Powdery mildew

Anagrapha falcifera NPV V USA Anagrapha falcifera

Anticarsia gemmatalis NPV V BR Anticarsia gemmatalis

Aspergillus flavus NRRL 21882 F BR, USA Aspergillus flavus mycotoxine

Aspergillus flavus AF36 F USA Aspergillus flavus mycotoxine

Aureobasidium pullulans DSM 14940 and DSM
14941

Y EU, CA Bacterial and fungal flower and foliar
diseases

Autographa californica NPV V CA Autographa californica

Bacillus amyloliquefaciens (formerly B. subtilis) MBI
600

B CA, J, EUc, NZ
(2009, 2012), USA

Seed treatment, soil borne diseases

Bacillus amyloliquefaciens AH2 B EUc Fungal soil diseases

Bacillus amyloliquefaciens AT-332 B J Botrytis, powdery mildew

Bacillus amyloliquefaciens bs1b B NZ (2010) Foliar diseases

Bacillus amyloliquefaciens PTA-4838 B USA Nematodes

Bacillus amyloliquefaciens ssp. plantarum (syn.
Bacillus subtilis var. amyloliquefaciens) D747

B CA, EU, J, NZ (2010) Seedling fungal pathogens

Bacillus cereus BP01 B USA Foliar plant growth regulator

Bacillus firmus i-1582 B CA, EU, NZ (2016) Nematodes

Bacillus licheniformis SB3086 B USA Fungal foliar diseases

Bacillus mycoides J CX-10244 B CA, USA Cercospora leaf spot on sugar beet
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Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Bacillus popilliae B USA Japanese beetle

Bacillus pumilus GB34 B USA Root diseases of soy beans

Bacillus pumilus QST 2808 B BR, EU, USA Fungal foliar diseases

Bacillus subtilis ATCC 6051 B NZ (2012) Fungal foliar diseases

Bacillus subtilis GB03 B CA, USA Fungal diseases

Bacillus subtilis HAI-0404 B J Foliar diseases

Bacillus subtilis IAB/BS03 B EUc Foliar fungal and bacterial diseases

Bacillus subtilis KTSB B NZ (2008) Foliar diseases

Bacillus subtilis QST 713 B BR, CA, EU, J, NZ
(2001), USA

Fungal foliar diseases

Bacillus subtilis var. amyloliquefaciens FZB24 B CA, EUc, USA Fungal foliar diseases

Bacillus subtilis Y 1336 B J Botrytis, powdery mildew

Bacillus thuringiensis EG-7826 B BR Lepidopteran caterpillars

Bacillus thuringiensis BMP 123 B BR Lepidopteran caterpillars

Bacillus thuringiensis CryC encapsulated in killed
Pseudomonas fluorescens

B USA Lepidopteran caterpillars

Bacillus thuringiensis CrylA(c) and CrylC in killed
Pseudomonas fluorescens

B USA Lepidopteran caterpillars

Bacillus thuringiensis EG 2348 B BR, EU Lepidopteran caterpillars

Bacillus thuringiensis SA-11 B BR, CA, EU Lepidopteran caterpillars

Bacillus thuringiensis SA-12 B BR, CA, EU Lepidopteran caterpillars

Bacillus thuringiensis Serotype H-14 B CA Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai B CA Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai B AUS (2000) Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai ABTS-1857 B EU, NZ (1999) Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai NB200 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai GC-91 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai GC-91 B BR, EU Lepidopteran caterpillars

Bacillus thuringiensis ssp. aizawai/kurstaki B NZ (1995) Lepidopteran caterpillars

Bacillus thuringiensis ssp. galleriae SDS-502 B CA Beetles

Bacillus thuringiensis ssp. israelensis B USA Mosquitoes

Bacillus thuringiensis ssp. israelensis EG2215 B USA Mosquitoes

Bacillus thuringiensis ssp. israeliensis (serotype
H-14) AM65-52

B CA, EU Mosquitoes

Bacillus thuringiensis ssp. kurstaki B AUS (1994), BR, EU,
J, NZ, USA

Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki ABTS 351 B EU Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki PB 54 B EU Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki (ALL STRAINS) B CA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki 3a,3b var SA-12 B AUS (1996) Cotton bollworm

Bacillus thuringiensis ssp. kurstaki BMP123 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki EG B BR Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki EG2348 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki EG2371 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki EG7826 B USA Lepidopteran caterpillars
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Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Bacillus thuringiensis ssp. kurstaki EG7841 B USA Lepidopteran caterpillars

Bacillus thuringiensis kurstaki evb-113-19 B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki encapsulated in
killed Pseudomonas fluorescens

B USA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki h-3a,3b hd1 B NZ (1996) Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki h-3a,3b, hd 263 B NZ (2000) Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki h-3a,3b, SA-11 B NZ (1995) Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki HD-1 B AUS (2000), BR, CA Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki SA-11 B AUS (2008) Lepidopteran caterpillars

Bacillus thuringiensis ssp. kurstaki SA-12 B AUS (2005) Cotton bollworm

Bacillus thuringiensis ssp. san diego encapsulated in
killed Pseudomonas fluorescens

B USA Beetles

Bacillus thuringiensis ssp. tenebrionis NB 176 B CA, EU Beetles

Beauveria bassiana 147 F EUc Red palm weevil, soft bodied insects

Beauveria bassiana 447 F USA Ants

Beauveria bassiana ANT-03 F CA Soft bodied insects

Beauveria bassiana ATCC 74040 F EU, NZ (2013), USA Spidermites, whitefly, thrips, aphids

Beauveria bassiana CG 716 F BR Whitefly, spidermites, beetles

Beauveria bassiana GHA F CA, EU, J Whitefly, thrips, aphids

Beauveria bassiana HF23 F CA Soft bodied insects

Beauveria bassiana IBCB 66 F BR Whitefly, spidermites, beetles

Beauveria bassiana IMI389521 F EUc Beetles in stored grain

Beauveria bassiana k4b1 F NZ (2005) Thrips

Beauveria bassiana k4b3 F NZ (2009) Sucking insects

Beauveria bassiana NPP111B005 F EUc Banana weevil, red palm weevil

Beauveria bassiana PL63 F Br Whitefly, spidermites, beetles

Beauveria bassiana PPRI 5339 F CA, EUc Soft bodies insects, caterpillars

Beauveria brongniartii NBL 851 F J Long horn beetle etc.

Burkholderia (Pseudomonas) cepacia M54 Y USA Damping off diseases, nematodes

Burkholderia (Pseudomonas) cepacia J82 Y USA Damping off diseases, nematodes

Candida oleophila isolate I-182 Y USA Post-harvest fungicide

Candida oleophila O Y EU Post-harvest fungicide

Chondrostereum purpureum PFC 2139 F CA, USA Inhibits sprouting/regrowth of shrubs
and trees

Chromobacterium subtsugae PRAA4-1T B EUc Various insects and mites

Clavibacter michiganensis ssp. michiganensis
bacteriophage

BP CA Clavibacter michiganensis ssp.
michiganensis

Colletotrichum gloeosporioides f. sp. aeschynomene F USA Northern jointvetch (Aeschynomene
virginica)

Condylorrhiza vestigialis NPV V BR Condylorrhiza vestigialis (Braz.
poplar moth)

Coniothyrium minitans CON/M/91-08 F CA, EU, USA Sclerotinia spp.

Cydia pomonella GV (Mexican strain and various
other strains)

V AUS (2010), CA, EU,
NZ (1999), USA

Codling moth
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Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Cydia pomonella GV V22 (CPGV-V22) V AUS (2015) Codling moth

Erwinia carotovora CGE234 B J Bacterial soft rot in potato and
vegetables

Fusarium sp. L13 F EUc No information found about target

Gliocladium catenulatum J1446 F CA, EU, USA Foliar fungal diseases

Gliocladium virens G-21 F USA Damping off diseases

Helicoverpa armigera NPV V AUS (2002), Br, EU,
USA

Helicoverpa ssp.

Helicoverpa zea NPV V AUS (1999), Br, USA Helicoverpa ssp.

Homona magnanima GV V J Tea leaf roller, tTea tortorix

Isaria fumosorosea Apopka 97 (formely Paecilomyces
fumosoroseus)

F EU, J, USA Soft bodied insects

Isaria fumosorosea Fe 9901 F CA, EU soft bodied insects

Lactobacillus casei LPT-111 B CA Various weeds in lawns

Lactobacillus plantarum BY B J Soft rot

Lactobacillus rhamnosus LPT-21 B CA Various weeds in lawns

Lactococcus lactis ssp. cremoris M11/CSL B CA Various weeds in lawns

Lactococcus lactis ssp. lactis LL102/CSL B CA Various weeds in lawns

Lagenidium giganteum F USA Mosquitoes

Lecanicillium lecanii (formerly Verticillium lecanii)
K4V1 ? K4V2

F NZ (2012) Thrips, whitefly, aphids, mealy bug,
psyllid and passion vine hopper

Lecanicillium lecanii (formerly Verticillium lecanii)
K4V2

F NZ (2012) Whitefly, thrips, aphids, passion vine
hopper

Lecanicillium muscarium (formerly Verticillium
lecanii) Ve6

F EU, J Whitefly, thrips

Lymantri dispar NPV V CA, USA Lymantra dispar

Metarhizium anisopliae F AUS Redheaded pasture cockchafer

Metarhizium anisopliae F AUS Greyback canegrub

Metarhizium anisopliae var. acridum F AUS Locusts

Metarhizium anisopliae ESF1 F USA Termites

Metarhizium anisopliae IBCB 348 F Br Leafhoppers

Metarhizium anisopliae PL 43 F Br Leafhoppers

Metarhizium anisopliae SMZ-2000 F J Aphids, thrips, whitefly

Metarhizium anisopliae var. anisopliae BIPESCO
5/F52

F CA, EU, USA Black vine weevil, thrips

Metschnikowia fructicola NRRL Y-27328 Y EUc Post-harvest diseases

Muscodor albus QST 20799 F USA Bacteria, fungi, and nematodes

Myrothecium verrucaria dried fermentation solids and
solubles

F USA Nematodes

Neodiprion abietis NPV V CA Balsam fir sawfly

Neodiprion lecontei NPV V CA Redheaded pine sawfly

Nosema locustae M CA, USA Grasshoppers, locusts, crickets

Orgyia pseudotsugata NPV V CA, USA Ddouglas-fir tussock moth

Paecilomyces lilacinus F BR Root knot nematodes

Paecilomyces lilacinus 251 F EU Root knot nematodes

Paecilomyces tenuipes T1 F J Whitefly, aphids, powdery mildew
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Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Pantoea agglomerans C9-1 B CA, USA Fire blight in apples and pears

Pantoea agglomerans E325 B CA Fire blight in apples and pears

Pantoea agglomerans p10c B NZ (2006) Fire blight in apples and pears

Pasteuria nishizawae Pn1 B CA, EUc, USA Nematodes (Heterodera, Globodera)

Pepino mosaic virus CH2 isolate 1906 V EU Pepino mosaic virus

Pepino Mosaic Virus isolate VC 1 V EUc Pepino mosaic virus

Pepino Mosaic Virus isolate VX 1 V EUc pepino mosaic virus

Phlebiopsis gigantea (several strains) F EU Root run (Heterobasidion annosum)
in conifers

Phlebiopsis gigantea VRA 1992 F CA Root run (Heterobasidion annosum)
in conifers

Phoma macrostoma F CA Broadleaf weeds in turf grass

Phytophthora palmivora MWV F USA Strangler vine (Morenia orderata)

Plodia interpunctella granulosis virus V USA Plodia interpunctella

Pochonia chlamydosporia PC10 F BR Nematodes

Pseudomonas aureofaciens Tx-1 B USA Fungal diseases in turf grass

Pseudomonas chlororaphis 63-28 B USA Pythium spp., Rhizoctonia solani,
Fusarium oxysporum

Pseudomonas chlororaphis MA342 B EU Seed-borne pathogens on barley and
oats

Pseudomonas fluorescens G 7090 B J Bacterial and black rot in
lettuce/cabbage

Pseudomonas fluorescens 1629RS B USA Frost prevention in fruits, almond,
potato, tomato

Pseudomonas fluorescens A506 (syn. 006418) B CA, USA Frost prevention in fruits, almond,
potato, tomato

Pseudomonas fluorescens CL145A B CA Zebra mussel

Pseudomonas rhodesiae HAI-0804 B J Bacterial diseases in citrus, peach,
plum

Pseudomonas sp. DSMZ 13134 B EU Rhizoctonia solani in potato

Pseudomonas syringae 742RS B USA Frost prevention in fruits, almond,
potato, tomato

Pseudomonas syringae ESC 10 B CA, USA Post-harvest diseases in various fruits

Pseudomonas syringae ESC-11 B USA Post-harvest diseases in various fruits

Pseudozyma flocculosa PF-A22 UL F EUc, USA Powdery mildew on roses and
cucumbers

Puccinia thlaspeos F USA Isatis tinctoria, dyer’s woad

Purpureocilium lilacinum PL 11 F EUc Nematodes

Pythium oligandrum M1 F EU Fungal diseases in cereals and oil seed
rape

Saccharomyces cerevisiae extract hydrolysate Y USA Bacterial diseases

Saccharomyces cerevisiae LAS02 Y EU Fungal diseases in fruits

Sclerotinia minor IMI 3144141 F CA Dandelion in turf

Serratia entomophila 626 B NZ (1994) Grass grubs

Spodoptera exigua NPV V EU, USA Spodoptera exigua (beet army worm)

Spodoptera frugiperda NPV 3AP2 V USA Spodoptera frugiperda
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Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Spodoptera littoralis NPV V EU Spodoptera littoralis (cotton leaf
worm)

Streptomyces acidiscabies RL-110T B CA Dandelion on turf grass

Streptomyces griseoviridis K61 B CA, EU, USA Fungal soil diseases in vegetables,
ornamentals

Streptomyces lydicus ATCC 554456 B NZ (2013) Soil borne and foliar diseases

Streptomyces lydicus WYEC 108 B CA, EU, NZ (2009),
USA

Soil borne and foliar diseases

Talaromyces flavus SAY-Y-94-01 F J Fungal and bacterial diseases

Trichoderma asperellum (formerly T. harzianum)
ICC012

F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma asperellum (formerly T.viride) T25 F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma asperellum (formerly T. harzianum)
TV1

F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma asperellum SF 04 (URM) 5911 F BR Damping off, Sclerotinia sclerotiorum

Trichoderma asperellum T211 F BR Damping off, Sclerotinia sclerotiorum

Trichoderma asperellum T34 F CA, EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma atroviridae SKT-1 F J Bacterial seedling blight and grain rot,
seedling fungal blight

Trichoderma atroviride (5 strains) F NZ (1991) Wound pathogens

Trichoderma atroviride (formerly T. harzianum) IMI
206040

F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma atroviride (formerly T. harzianum) T11 F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma atroviride ag1, ag2, ag3, ag5, ag11, ag15 F NZ (1987) Wound pathogens

Trichoderma atroviride I-1237 F EU Wound pathogens and fungal soil
diseases

Trichoderma atroviride lu132 F NZ (2004) Foliar diseases

Trichoderma atroviride SC1 F EU Wound pathogens

Trichoderma gamsii (formerly T. viride) ICC080 F EU Fungal soil diseases in vegetables,
ornamentals

Trichoderma hamatum TH382 F USA Fungal soil diseases in vegetables,
ornamentals

Trichoderma harzianum F AUS (2004) Eutypa dieback in grapes

Trichoderma harzianum KRL-AG2 (syn. T22) F CA, EU, USA Fungal soil diseases in vegetables,
ornamentals

Trichoderma harzianum ESALQ-1306 F BR Damping off, Sclerotinia sclerotiorum

Trichoderma harzianum IBL F006 F BR Damping off, Sclerotinia sclerotiorum

Trichoderma harzianum ITEM 908 F EU Soil borne diseases

Trichoderma harzianum T-39 F USA Fungal soil diseases in vegetables,
ornamentals

Trichoderma polysporum ATCC 20475 F USA Wound pathogens

Trichoderma polysporum IMI 206039 F EU Botrytis cinerea, Chondrostereum
purpureum

Trichoderma stromaticum CEPLAC 3550 F BR Witch’s broom
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Integrated Pest Management (IPM) program that
provides an environmentally and economically sound

alternative to chemical pest control (van Lenteren and

Bueno 2003; Cock et al. 2010). Increasingly, seed
treatments with microbial biological control agents are

also used as a form of ABC (Abuamsha et al. 2011).

We estimate that in 2015 ABC was applied on more
than 30 million ha worldwide (Table 1).

Since the 1970s, ABC has moved from a cottage

industry to professional research and production
facilities, as a result of which many efficient agents

have been identified, quality control protocols, mass

production, shipment and release methods matured,
and adequate guidance for farmers has been developed

(van Lenteren 2003, 2012; Cock et al. 2010; Ravens-

berg 2011). In this paper we will not describe the
process of collection, evaluation, development of

mass production and registration of biological control

agents in detail. Information concerning these factors
for invertebrate biological control agents can be found

in Cock et al. (2010) and for microbial biological

control agents in Köhl et al. (2011), Ravensberg
(2011) and Parnell et al. (2016). When searching for

natural enemies, it is not unusual to find dozens or

more species attacking a certain pest, but criteria such
as population growth rate, host range, and adaptation

to crop and climate can often be used to quickly

eliminate clearly inefficient species. The most

promising species are compared by using character-
istics such as efficacy of pest control, potential

environmental risks and economy of mass rearing.

For the screening of microbial control agents, large
collections of hundreds or thousands of isolates are

typically established and high throughput screening

assays are increasingly applied to assess important
traits such as cold tolerance, metabolite production

and efficacy against the target pest.

Important recent successes in the use of ABC
include the virtually complete replacement of chem-

ical pesticides by predators (mites and hemipterans) to

control thrips and whiteflies on sweet peppers in
greenhouses in Spain (Calvo et al. 2012), and

hemipteran predators to control new invasive pests

like the South American pinworm Tuta absoluta
(Meyrick) (Lepidoptera: Gelechiidae) (Urbaneja et al.

2012). These examples show how well biological

control with invertebrate biological control agents can
function in modern agriculture, and that they can

actually save agriculture in large areas that otherwise

would have had to terminate vegetable production.
Another recent success deals with the importance of

microbial control agents. The invasion of the cotton

bollworm, Helicoverpa armigera (Hübner) (Lepi-
doptera: Noctuidae), into Brazil in 2012 caused

tremendous damage to corn, cotton, and soy, as

pesticides were not effective due to resistance, or

Table 3 continued

Microorganisma Typeb of
organism

Country/region where
approved

Target(s)

Trichoderma virens G-41 F CA Fungal soil diseases in vegetables,
ornamentals

Trichoderma viride ATCC 20476 F USA Wound pathogens

Typhula phacorrhiza 94671 F CA Snow molds in turf

Ulocladium oudemansii U3 F NZ (2004) Foliar diseases, Pseudomonas
syringae

Verticillium albo-atrum (formerly V. dahliae)
WCS850

F CA, EU, USA Dutch elm disease

Xanthomonas campestris pv. vesicatoria
bacteriophage

BP USA Xanthomonas campestris pv.
vesicatoria

Information obtained from (AUS) https://portal.apvma.gov.au/pubcris, (BR) http://extranet.agricultura.gov.br/agrofit_cons/principal_
agrofit_cons, (CA) http://pr-rp.hc-sc.gc.ca/ls-re/result-eng.php?p_search_label, (EU) http://ec.europa.eu/food/plant/pesticides/eu-
pesticides-database/public/?event=homepage&language=EN, (J) Japan Plant Protection Association, (NZ) https://eatsafe.nzfsa.
govt.nz/web/public/acvm-register, (USA) https://iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1
a Strain numbers if available
b B bacterium, BP bacteriophage, F fungus, Y yeast, V virus
c Pending in the EU
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were simply not available. Emergency approvals of
the entomopathogenic bacterium Bacillus thuringien-

sis and baculovirus products provided farmers with the

only effective control method at the time (Pratissoli
et al. 2015).

Europe is still the largest commercial market for

ABC with invertebrate biological control agents,
which is partly due to political support of biological

control within IPM programs (EC 2009), but also due

to consumer demand, pressure by NGOs (e.g., Green-
peace 2007) and a well-functioning, highly developed

biological control industry. The next largest market is

North America, followed by Asia, Latin America,
Africa and the Middle East. A strong growth of ABC

with arthropods is taking place in Latin America and

the same is expected to occur in Asia (Dunham 2015;
ResearchandMarkets 2016b). According to the latest

marketing reports (e.g., ResearchandMarkets 2016a)

North America is now the largest market for biopes-
ticides, followed by Europe.

Commercially available biological control agents

Cock et al. (2010) mentioned 170 species of inverte-
brate biological control agents that have been used in

ABC in Europe. Van Lenteren (2012) provided a list of

about 230 species of invertebrate biological control
agents that have been used in pest management

worldwide, but recognised that this list was not yet

complete. Collection of new data in 2016 showed the
use of almost 350 natural enemy species (Table in

Supplementary electronic information). There are

about 500 commercial producers of invertebrate
biological control agents worldwide, although most

of these employ less than ten people each. Less than

ten producers employ more than 50 staff, with the
largest producer having about 1400 employees. In

addition to commercial producers, there are hundreds

of government-owned production units, particularly in
China, India and Latin America. Also, and especially

in Latin America, some large-scale farmers and
growers are involved in producing their own natural

enemies. In addition to the species listed in Table 2,

invertebrates are commercially produced for biolog-
ical control of weeds (40 species), for soil improve-

ment (six species), as feed and food (40 species), and

as pollinators (ten species). These species are not
listed in Table 2.

After predators and parasitoids, microbial biolog-
ical control agents are the next most commonly used

organisms in ABC. As far as we are aware, Table 3

may be the first list published about microbial
biological control agents registered worldwide.

Although we realize the list is not yet complete, it

provides information on about 209 microbial strains
from 94 different species commercially available for

control of pests. Information we could obtain on

registered strains was not always consistent. In some
cases agents seem registered without strain informa-

tion or under different strain identifications for differ-

ent regions, so that some organisms may be listed
more than once in Table 3. Microbial biological

control agents are produced by approximately 200

manufacturers, but this is an underestimate as no data
are available for China or India (Dunham 2015). There

is a great diversity of manufacturers and often they are

specialised in one or two types of microorganisms and
production methods. The majority of manufacturers

are small to medium-sized companies. Recently, large

multinational agro-chemical companies are getting
involved in the production and marketing of so-called

biopesticides, again through the acquisition of small to

medium-sized companies. New companies are still
founded on a regular basis, and acquisitions and

mergers occur frequently. There is a similar trend to

consolidation as that which occurred in the seed and
chemical pesticides business in the past decades.

Viability of commercial biological control market

Producers of natural enemies are understandably
reluctant to provide data about market developments,

profit margins and sales volumes. In 2015, the global

pesticide market had a value of US$ 58.46 billion
(ResearchandMarkets 2016a). The global market of

biological control agents (invertebrates and microor-

ganisms) was approximately US$ 1.7 billion in 2015
(Dunham 2015; Dunham W, personal communication

2016), which is less than 2% of the pesticide market.
Growth of the market for synthetic pesticides is

expected to be between 5 and 6% over the next five

years (Research andMarkets 2016b), but interestingly,
growth of the biological control market has been

faster: it showed an annual increase of sales of 10%

before 2005 and more than 15% per year since 2005
(Dunham 2015; Dunham W, personal communication
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2016). The largest European biological control com-
panies are still getting the main part of their income

from sales of invertebrate biological control agents,

but the contribution of microbial biological control
agents is steadily increasing. Commercial ABC is used

in protected crops (e.g., vegetables, ornamentals) and

high-value outdoor crops (e.g., strawberries, vine-
yards), contributing to about 80% of the market value

of invertebrate biological control agents. Biological

control programs for each of these crops may involve
up to 15–20 different species of natural enemies (van

Lenteren 2000). The remaining 20% of the market

value for natural enemies comes from application of
relatively simple, cheap but effective biological con-

trol programs often using only one biological control

agent (e.g., Trichogramma spp. against lepidopterans
in cereals and sugarcane, and Cotesia spp. against

lepidopterans in sugarcane). Almost 40% of the

income of the European companies originates from
invertebrate biological control agents sold for control

of thrips, another 30% for control of whitefly, 12% for

control of spider mites, 8% for control of aphids, and
the remaining 10% for control of various other pests

(Bolckmans K, personal communication 2016). Since

2005, predatory mites have contributed enormously to
the growth of the market for invertebrate biological

control agents as a result of: the (re)discovery of their

use for control of whiteflies (Nomikou et al. 2001),
finding more efficient species for thrips control

(Messelink et al. 2006), the development of techniques

to enhance dispersal and establishment of predatory
mites in crops (Messelink et al. 2014), and the

development of new highly economic production

technologies (Bolckmans et al. 2005).
The recent increase in annual market growth for

biological control agents is the result of many factors.

Compared with synthetic chemical pesticides, ABC
agents show important inherent positive characteris-

tics: they are less detrimental to the health of farm

workers and persons living in farming communities;
they do not have a harvesting interval or re-entry

period as do pesticides; they are more sustainable, as
there has been no development of resistance against

arthropod ABC agents; they do not cause phytotoxic

damage to plants and, as a result, most farmers report
better yields and healthier crops after switching to

biocontrol-based IPM. Increasingly, produce in

Europe and North America can only be sold when
residue levels are well below the legal MRLs because

of retailers demands. In some cases low residue levels
give farmers a preferred partnership with retailers

who prefer to buy products with less residues.

Furthermore, biological control might contribute to
considerable reduction in emission of greenhouse

gasses in comparison with pesticide use (Heimpel

et al. 2013).
In addition to these inherent advantages of biolog-

ical control, consumers have and will increasingly

express concerns about food safety and environmental
impact issues in relation to synthetic pesticide use,

though they often have no direct way to influence crop

protection policies. However, food retailers and
supermarkets cleverly exploit this and use these two

concerns increasingly in advertising their produce. In

many countries, retailers and supermarkets more
strongly restrict use of pesticides than do government

policies (Buurma et al. 2012), and, particularly in

Europe, the effect of NGOs reporting on excess
residue levels and illegal use of pesticides has had a

positive effect on the use of biological control (e.g.,

Greenpeace 2007). Adoption of IPM programs in the
EU, in which biological control is a cornerstone, has

increased interest in and application of ABC (Lamich-

hane et al. 2017). Concurrently with the adoption of
this IPM approach, it was announced that a large

number of pesticides were to be legally discontinued

and this has also led to requests for ABC solutions.
Policy measures such as a strong reduction in use of

synthetic pesticides in China have also opened

avenues for ABC. A number of other national
measures have been shown to stimulate use of ABCs.

Examples are fast track and priority registration of low

risk pest control agents such as ABC’s similar to the
special registration procedure for biopesticides in the

USA (EPA 2017), subsidizing biological control

agents to growers (several countries in the EU) and
application of pesticide levies (e.g., Denmark).

However, ABC, and biological control in general,

also face a very serious problem. Pests have been
accidentally exported for many years, but at an ever

increasing rate (Bacon et al. 2012). Until recently,
potential biological control agents could be collected

in the country of origin of the pest, evaluated, mass

produced and released when an effective agent was
found. But today, under the Convention on Biological

Diversity (CBD 1993) countries have sovereign rights

over their genetic resources and agreements governing
the access to these resources and the sharing of
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benefits arising from their use need to be established
between involved parties [i.e., Access and Benefit

Sharing (ABS) (Cock et al. 2010)]. This means that

currently, permission to sample potential biological
control agents can only be granted by the country that

has sovereign rights over the genetic resources and

collection of new natural enemies has become
increasingly difficult or impossible in countries which

have first accidentally exported the pest, a situation

which seems very unreasonable.

What might boost future use of ABC?

First, we expect that the above-mentioned factors that

are responsible for the recent growth of ABC will play
an even more important role in the near future, as their

influence will spread to other countries and regions

worldwide due to support for ‘‘greener’’ agriculture by
consumers, NGOs, governments and growers.

Another influential issue accelerating use of ABC

relates to changing regulations. Regulations should
facilitate the use of innovative sustainable solutions

resulting in a choice for the ecological best pest

control option. This can be realized by fast track
registration, priority registration, and use of a combi-

nation of comparative assessment of pest control

methods together with the substitution principle,
through which an environmentally safer pest control

method can substitute for a synthetic pesticide (EC

2009). Also zonal authorization (e.g., authorization for
all of the EU instead of registration per country),

permanent registration (instead of reregistration after

10–15 years) andmutual recognition of registration by
member states in the EU are all measures that are

likely to result in increased application of microbial

biological control, and are now considered for low risk
substances including ABC’s in the EU. The changes in

registration procedures will result in faster registration

of more microbial biological control agents and,
logically, in lower product costs. The Environmental

Protection Agency (EPA) in the USA is already
applying several of the above-mentioned factors

related to registration of ABC’s, but the EU is slow

in adopting specific criteria and procedures for
biological control agents. Development of a specific

protocol for registration of microbial biological con-

trol agents that will be used locally or worldwide,
would be another big step forward in making use of

biological control more attractive and accessible for
farmers.

Removal of pesticides from the market due to

observed health, non-target and environmental effects
(e.g., the recent development concerning neonicoti-

noids; EASAC 2015), the development of resistance

that makes pesticides less effective, and the appear-
ance of new pests for which no pesticides are available

(e.g., Tuta absoluta invasion in Europe in 2006,

Urbaneja et al. 2012) all stimulate use of ABC. Non-
governmental organizations (NGOs) have in several

cases successfully used information about environ-

mental effects and illegal use of pesticides to initiate a
change from chemical to biological control [e.g., in

2005 in the Almeria region in Spain, chemical control

of pests in sweet pepper was replaced by biological
control in a period of two years (Calvo et al. 2012)]. A

very fast change from chemical control to biological

control as in sweet peppers in Spain also occurred for
other crops in that region. In the 1980s there was a

similar drastic change from chemical to biological

control in vegetable production in Northwest Europe
(van Lenteren 2000), though this was not caused by a

pesticide scandal like the one concerning sweet pepper

production in Spain (Greenpeace 2007), but by
growers recognition of the inherent positive charac-

teristics of biological control mentioned above, and by

resistance of several insect pests to conventional
chemical pesticides. The development of new and

better biological control solutions, improved and more

stable formulations for microbial biological control
agents and their use as seed treatments, more conve-

nient application methods for invertebrate biological

control agents (equipment to release biological control
agents in crops, use of drones, etc.) and increasingly

stable formulations of microbial biological control

agents, have also contributed to growth in uptake of
biological control. Interestingly, growers quickly took

up the extra knowledge and methods to make biolog-

ical control a success, and in quite a number of cases
came up with new insights and technologies to

improve release and establishment of invertebrate
biological control agents. They also stimulated

researchers and the biological control industry to

provide new invertebrate biological control agents for
emerging pests. We hope farmer’s organizations will

create a new renaissance in crop protection by seeing

the many positive sides, including economics, of
ABC. In their own interest they should become much
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more proactive and demand priority and fast track
registration of innovative sustainable control methods.

Finally, application of the ‘‘true cost’’ principle for

chemical pesticides would strongly increase the mar-
ket for biological control. Pesticides are subsidized by

governments because the industry is not held respon-

sible for human illnesses and deaths as a result of
chronic exposure to pesticides, and also does not have

to provide the funding to repair damage done to the

environment (e.g., reduction of biodiversity, limiting
or even preventing the functioning of ecosystem

services such as pest and disease control, pollination

and cleaning of (drinking) water). Thus, pesticide
costs related to harmful effects on human health and

the environment are externalized and are actually paid

by society, which is unethical and unscrupulous
because the pesticide industry only reaps the economic

benefits without being responsible for these costs.

Benefit-cost ratios of chemical pesticides are usually
said to be in the order of 4 when these ‘‘external

hidden’’ costs are not taken into account (e.g.,

Pimentel and Burgess 2014). If true costs were applied
to pesticides their benefit-cost ratio would still in most

cases be higher than 1, in other cases close to 1, and in

some cases even below 1, and, according to Bourguet
and Guillemaud (2016) ‘‘the profitability of pesticides

has, indeed, been overestimated in the past.’’ Realistic

pricing involving true costs would result in much
higher costs of chemical pesticides and fairer compe-

tition with non-chemical alternative controls.

Although hidden costs of pesticides have been docu-
mented since the 1980s, they have seldom resulted in

an increase of pesticide prices. A first step to true cost

pricing would be to apply levies on synthetic pesti-
cides resulting both in higher, thus more realistic

pricing, as well as in fairer competition with prices of

biological control agents used in IPM programs.

And what next?

Too often the following reasoning is used to justify the
use of synthetic pesticides: agriculture has to feed

some ten billion people by the year 2050, so we need to

strongly increase food production, which can only be
achieved with usage of synthetic pesticides. This

reasoning is simplistic, erroneous and misleading.

Simplistic because it ignores a multitude of other
approaches to pest, disease and weed control that we

summarize below under IPM, erroneous as sufficient
healthy food can be produced without synthetic

pesticides (e.g., IPES-Food 2016; Ponisio et al.

2014; UN 2017), and misleading in that it minimizes
the importance of a well-functioning biosphere and

high biodiversity for the long-term sustainable pro-

duction of healthy food for a growing human popu-
lation (De Vivo et al. 2016; Erisman et al. 2016; IPES-

Food 2016; Tillman et al. 2012). This short-sighted

mercenary attitude might actually result in very
serious environmental problems in the near future

(e.g., van Bavel 2016). A more sensible approach to

food production is to ask ourselves: (1) how can we
create a healthy and well-functioning biosphere in

which biodiversity is treasured instead of strongly

reduced, both because of its necessity for sustainable
food production and maintaining a hospitable bio-

sphere for humans (utilitarian approach), as well as

because of our ethical responsibility (ethical
approach), (2) how can healthy food best be produced

in this well-functioning biosphere, and (3) what kind

of pest, disease and weed management fits in such a
production system.

From the time agriculture developed some

10,000 years ago until only 65 years ago, agriculture
was, after periods with slash and burn activities, an

holistic activity, based on a systems approach. Farm-

ing societies had to design plant production and crop
protection programs based on prevention of pests. This

true form of IPM included, among others, planning of

crop combinations, crop rotation, tillage, use of
resistant or tolerant crop cultivars, choice of the right

planting and harvesting periods, biological, mechan-

ical and physical control etc. (e.g., Ehler 2006). Due to
an understanding of plant genetics, the development of

synthetic fertilizers and pesticides, agricultural

research changed from an holistic approach to an
extremely reductionist science where pests are

avoided by a prophylactic approach consisting of

calendar sprays or by curative treatments. A total
systems approach to agriculture no longer seemed

necessary, but this is a short-sighted and dangerous
viewpoint and the ever increasing use of synthetic

pesticides has resulted in a serious loss of biodiversity

(e.g., EASAC 2015), which in turn resulted in
prevention or reduction in functioning of the ecosys-

tem services of pest reduction, pollination and water

purification (Millennium Ecosystem Assessment
2005). A prophylactic approach is also an exorbitant
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input of resources with financial consequences of
billions of US$ (Costanza et al. 1997; Pimentel and

Burgess 2014; Bourguet and Guillemaud 2016).

Lewis et al. (1997) made a plea to return to a system
approach based on true IPM. True IPM is a durable,

environmentally and economically justifiable system

in which pest damage is prevented through the use of
natural factors limiting pest population growth, and

only—if needed—supplemented with other, prefer-

ably non-chemical measures (Gruys, P. in van Len-
teren 1993). As stated above, there are many

alternatives for synthetic pesticides, and cultural

methods together with modern plant breeding and
biological control within true IPM programs have

been shown to provide excellent yields (e.g., Radcliffe

et al. 2009). The fact that more creativity, knowledge
and ecological insight are needed to be able to apply

such pesticide-free crop management schemes should

no longer be an excuse to use unsustainable, environ-
mentally unsafe and toxic synthetic pesticide pro-

grams (UN 2017). We are not advocating a dogmatic,

one-sided pest control approach, and we also do not
support a static holistic approach in which (agro-)

ecosystems are seen as non-changing functional units.

Instead we propose to combine the sustainability gain
from all types of agriculture and pest prevention/con-

trol methods, and consider agro-ecosystems as con-

stantly changing systems. In such an approach, we are
convinced that ABC can be applied much more than it

is today, but we also know it will not solve all pest

problems. A seriously neglected form of biological
control, conservation biological control, should be the

basis of most crop protection programs by providing

sufficient invertebrate biological control agents and
undisturbed buffering microbiomes in soils and plants

when pests invade an agro-ecosystem (Gruys 1982;

Blommers 1994; Berendsen et al. 2012). Delaying or
preventing sprays will result in the reduction of

secondary pests that arise after killing natural enemies

of pest organisms. These often cause resurgence
problems when synthetic pesticides are used. Host-

plant resistance is one of the important cornerstones of
IPM and should play a more important role in pest

prevention. In IPM we are not dependent on full

resistance, often partial host-plant resistance is enough
because pest populations develop more slowly and

natural enemies can more easily reduce such popula-

tions. Both classic and modern plant breeding,
including CRISPR-Cas and RNAi, will help us design

robust IPM programs. In order to obtain more
governmental and public support, we—researchers

and practitioners of biological control—will have to

collaborate with all stakeholders in pest management
to involve them and make them aware of the important

economic, environmental, societal and environmental

benefits of biological control. Recent experiences in
New Zealand, where farmers pushed for and imple-

mented biological control (Hardwick et al. 2016),

protected crops in South-eastern Spain (growers and
public embraced biological control: Jacas and Urba-

neja 2009) and weed control in South Africa (public

supported weed biological control in the working for
water program: Moran et al. 2005) shows that widely

disseminated information about successes of biolog-

ical control projects result in strong public support and
increased government funding.

In conclusion, we see the urgent need for a new type

of agriculture that is somewhere between conventional
and organic, is flexible and non-dogmatic. We might

address it as Conscious Agriculture, a term which we

borrowed from the conscious capitalism movement
(Mackey and Sissodia 2014). Conscious agriculture

involves participation of all stakeholders in the

production and consumption chain, and respects the
environment and resource availability for future

generations. This is in contrast with conventional

agriculture which concentrates on profit maximization
and externalizing the cost of the harmful effects on

human health, society and the environment (Robinson

2007; Erisman et al. 2016). Conscious agriculture fits
seamlessly into a ‘‘common agricultural and food

policy’’ as recently published in a position paper by

Fresco and Poppe (2016). They review societal
challenges and options for innovation, and conclude

that such a policy should not concentrate on agricul-

ture only, but needs to be developed with participation
of all stakeholders, and will help ‘‘the entire food

chain—from farm to fork, from animal breeding to

human food production—to cope with the challenges
of the coming decades’’. Within conscious agriculture,

the first line of crop protection consists of strictly
enforced quarantine regulations, prevention of pest

development by cultural methods, host-plant resis-

tance, classical and conservation biological control,
preventative releases of natural enemies (an aspect of

ABC) and use of banker plants to establish natural

enemy populations before pests establish (Messelink
et al. 2014). When pests exceed acceptable population
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levels, i.e. when economic damage is expected to
occur, augmentative biological control should be the

first option for pest management, if needed in com-

bination with other IPM tactics. Were ‘‘conscious
agriculture’’ to be considered a serious alternative to

conventional farming, augmentative biological con-

trol would face an even brighter future.
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