Honeybees

Honey Bees Living Near Maize Fields Are Exposed To Neonicotinoids Throughout The Growing Season

We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of largescale annual cropping systems that utilize neonicotinoid seed treatments.

La toxicité dépendante du temps des néonicotinoïdes et d'autres toxiques, implications pour une nouvelle approche d'évaluation des risques. Henk A. Tennekes et Francisco Sànchez-Bayo, JEAT 2011 S:4. Traduction Christian Pacteau.

Dans le texte proposé, deux éminents toxicologues, doublés d'excellents mathématiciens, Henk A. TENNEKES hollandais, et Francisco SANCHEZ-BAYO australien, ont mis en commun leur compétence pour démontrer que les "Tests Standards", aujourd'hui en usage dans le domaine des travaux préalables à l'homologation des substances chimiques -en particulier des pesticides-, ne sont pas en mesure de définir des "niveaux sûrs d'exposition", tant pour les êtres humains que pour la biodiversité. Cette incapacité relève tant des points de vue "conceptuel que statistique". S'appuyant sur les travaux, anciens certes, de Haber d'une part, et de Druckrey (pharmacologue) et Küpfmüller (mathématicien) d'autre part, mais pourtant toujours d'une évidente actualité, ils démontrent d'un côté les failles des Tests Standards, de l'autre ils démontrent qu'un test, fondé sur une base conceptuelle et une pratique différentes, le test "Time-To-Event" ou TTE, "Temps-pour-un-Evènement", permet au contraire de prévoir les effets probables, au cours du temps, des substances sur les espèces non-cibles. Ainsi s'effondre le postulat (idéologique car jamais démontré) de l'innocuité des "faibles doses". Sous certaines conditions, résultant de l'interaction entre la substance et les récepteurs de l'organisme, plus le temps d'exposition s'allonge plus la dose totale reçue diminue pour produire un même effet. La substance est ainsi plus toxique à faible dose qu’à forte dose, le temps jouant ainsi un rôle majeur dans l’expression de la toxicité. Ce démenti scientifique formel infligé au postulat "d'un seuil d'innocuité" des faibles doses ouvrira-t-il les yeux des différentes Agences gouvernementales ? Si l’on souhaite assurer la sécurité des humains et l’avenir de la biodiversité il y a urgence !
Christian Pacteau

Het daadwerkelijke risico van neonicotinoide insecticiden wordt schromelijk onderschat

De traditionele benadering van giftigheid is het testen in model organismen van dosis (concentratie) - effect verhoudingen bij een willekeurig vastgelegde blootstellingsduur, waarvan wordt verondersteld dat daarmee de 'acute' of 'chronische' blootstelling wordt nagebootst. Deze benadering meet het aandeel van alle blootgestelde individuen waarbij effecten worden waargenomen. Deze gegevens kunnen echter niet worden gerelateerd aan de zeer uiteenlopende blootstellingssituaties van mens en dier aan de vele potentieel giftige stoffen. In de bijgevoegde publicatie van Henk Tennekes en Francisco Sánchez-Bayo wordt aangetoond dat met de huidige toxicologische risicoanalyse het daadwerkelijke risico schromelijk kan worden onderschat. Voorbeelden daarvan zijn de giftigheid van neonicotinoide insecticiden en sommige zware metalen voor arthropoden (geleedpotigen). Hier zijn volledig nieuwe benaderingen vereist. Een toenemend aantal onderzoekers gebruikt nu een variant van het traditionele test protocol, waarbij de dosis (concentratie) wordt gekoppeld aan de tijd tot een bepaald effect (TTE) wordt waargenomen. Deze TTE benadering meet de effecten bij alle individuen, en verstrekt informatie over dosis (concentratie) en de blootstellingstijden die nodig zijn voor een giftige werking op de geteste organismen. Op die manier kunnen extrapolaties en voorspellingen worden gemaakt over de giftige gevolgen van iedere combinatie van dosis (concentratie) en blootstellingstijd.

Hoe langdurige blootstelling aan imidacloprid kan leiden tot de ondergang van bijenvolken

Imidacloprid is het eerste zeer efficiënte insecticide waarvan het werkingsmechanisme berust op bijna volledige en vrijwel onomkeerbare blokkade van de postsynaptische nicotinerge acetylcholine receptoren (nAChRs) in het centrale zenuwstelsel van insecten. Imidacloprid bootst de werking van acetylcholine na, maar wordt, in tegenstelling tot acetylcholine, niet gedesactiveerd door acetylcholinesterase en activeert daardoor permanent nAChRs. De chronische blootstelling van insecten aan imidacloprid leidt dientengevolge tot cumulatieve en vrijwel onomkeerbare blokkade van nAChRs, die functies vervullen in vele cognitieve processen. Een honingsbij moet tijdens een voedselvlucht vele complexe visuele patronen leren en zich ook weten te herinneren. Deze cognitieve functies kunnen worden verstoord wanneer nAChRs, noodzakelijk voor de vorming van lange termijn geheugen en betrokken bij het vrijmaken van deze informatie, voortdurend worden geblokkeerd. Bij sub-letale doseringen van imidacloprid treedt bij de honingsbij dan ook een verandering van het foerageergedrag op. Op 29-03-2012 werd het causale verband tussen bijensterfte en neonicotinoide bestrijdingsmiddelen in twee artikelen in het tijdschrift Science onweerlegbaar bewezen.

Continuous exposure of bees and brood to imidacloprid may ultimately cause colony collapse

Imidacloprid is the first highly effective insecticide whose mode of action has been found to derive from almost complete and virtually irreversible blockage of postsynaptic nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects. Imidacloprid mimics the action of acetylcholine, but unlike acetylcholine, imidacloprid is not deactivated by acetylcholinesterase and thus persistently activates nAChRs. Chronic exposure of insects to imidacloprid therefore leads to cumulative and virtually irreversible blockage of nAChRs in their central nervous system, which play roles in many cognitive processes. A honey bee during a foraging flight must learn and recall many complex visual patterns. These cognitive functions may be perturbed when nAChRs, necessary for the formation of longterm memory and involved in acquisition and retrieval processes, are persistently blocked. At sub-lethal doses imidacloprid can alter honey bee foraging and learning. Imidacloprid has been detected at levels of 5.7 μg kg-1 in pollen from French hives and foraging honey bees reduced their visits to a syrup feeder when it was contaminated with 3 μg kg-1 of imidacloprid. Foraging as well as hive worker bees and brood are likely to be continuously exposed to imidacloprid when contaminated food is collected and stored inside the hive. This may in the course of time be detrimental to the bee colony and ultimately cause colony collapse.

With global value of $980 million in 2008, imidacloprid provides insect control for crops and noncrops

Imidacloprid, developed by Bayer CropScience in 1985, is an insecticide, a seed treatment insecticide and seed treatment insecticide/fungicide combination. Bayer still holds patents on the active for some formulations, specifically when combined with fertilizer. Its mode of action is nicotine acetylcholine receptor agonist/antagonist, and it is registered in more than 100 countries worldwide for use on more than 140 crops. It is used primarily on canola, cereals, corn, cotton, oil seed rape, pastures, potatoes, rice, sorghum, sugarbeet and sunflowers for approved control of aphids, fruit flies, leafhoppers, grubs, termites, thrips, white fly, wireworms, various beetles (including flea beetle and pygmy beetle), various weevils, nematodes and various fungal diseases. It also has widespread applications in noncrop, including nursery, landscape, forestry, pest control and veterinary applications. Bayer Animal Health has been using a 10% imidacloprid formulation for its popular Advantage/Advantix flea treatments for dogs and cats as early as 1986.

Current toxicological risk assessment can lead to serious underestimates of actual risk - neonicotinoids are a case in point

The traditional approach to toxicity testing is to consider dose (concentration)-effect relationships at arbitrarily fixed exposure durations which are supposed to reflect ‘acute’ or ‘chronic’ time scales. This approach measures the proportion of all exposed individuals responding by the end of different exposure times. Toxicological databases established in this way are collections of endpoint values obtained at fixed times of exposure. As such these values cannot be linked to make predictions for the wide range of exposures encountered by humans or in the environment. Thus, current toxicological risk assessment can be compromised by this approach to toxicity testing, as will be demonstrated in this paper, leading to serious underestimates of actual risk. This includes neonicotinoid insecticides and certain metallic compounds, which may require entirely new approaches. In order to overcome this handicap, an increasing number of researchers are using a variant of the traditional toxicity testing protocol which includes time to event (TTE) methods. This TTE approach measures the times to respond for all individuals, and provides information on the acquired doses as well as the exposure times needed for a toxic compound to produce any level of effect on the organisms tested. Consequently, extrapolations and predictions of toxic effects for any combination of concentration and time are now made possible.

Recent outbreaks of American Foulbrood disease in hives in Hawkes Bay and Northland are a timely pointer to the precarious life of bees in New Zealand and to the factors impinging upon its health

New Zealand agriculture and horticulture is dependent solely upon bees to carry out pollination. We have no other insects capable of doing the job. Yet these vital workers are under extraordinary threat, not only from insecticides but also from disease, habitat loss and the varroa mite. Currently, this mite poses the most immediate danger. Since its arrival in 2000 it has exterminated feral bees whose role in pollinating clover was taken for granted by farmers. Clover is an important source of natural nitrogen, the prime fertiliser of pasture. We can’t afford, therefore, to compromise the health of bees that are managed in hives or we risk losing everything – the export basis of our economy, along with the security of the food which keeps us alive. But by using insecticides whose active ingredient is a systemic neonicotinoid chemical, it’s likely we are. The National Beekeepers Association points out that all the conditions which are implicated in bee die-off overseas exist here, namely: the threat of increased pests and diseases, the long term effects of the varroa mite, the sub-lethal and synergistic effects of agricultural chemicals and the loss of habitat.

Imidacloprid, Found in Most Homeowner Insecticides, is Translocated to Nectar and Pollen and Kills Good Bugs

There are multiple ways that plants in urban landscapes can contain imidacloprid-contaminated nectar, since it is commonly applied in the landscape for many pests and many greenhouse plants are treated with prior to sale and transplanting. Imidacloprid may persist in nectar for a long time, since soil applications were effective against foliar pests for 1 to 2 years in containers and landscape trees. Injections of concentrated volumes of imidacloprid applied to trees trunks and roots were effective for 12 months for ash and linden. A soil application of imidacloprid to Eucalyptus tree resulted in 500 ppb in nectar and pollen, which will kill any insect feeding on nectar and pollen. Tree injections of imidacloprid at flowering are cause for concern, since linden flowers are a good source of nectar and pollen for bees, butterflies, and other beneficial insects.

Neonikotinoide werden für das Bienen- und das Vogelsterben in der Agrarlandschaft verantwortlich gemacht

Viele Ackerkulturen werden heute von der Aussaat bis zur Ernte mit Pestiziden behandelt. Pestizide beeinträchtigen ganz erheblich die biologische Vielfalt. Neben bestimmten – für den Anbau schädlichen – Pflanzen und Insekten eliminieren viele Pestizide auch alle übrigen Wildkräuter und Insekten – und fehlen höheren Tieren dann als Nahrung. Etliche Arten der Feldvögel haben daher in den letzten Jahren radikal abgenommen. So wird die Stoffgruppe der Neonikotinoide für das Bienen- und das Vogelsterben in der Agrarlandschaft verantwortlich gemacht.