Imidacloprid was detected in 89% of water samples in agricultural areas of California, with 19% exceeding the US Environmental Protection Agency’s chronic invertebrate Aquatic Life Benchmark of 1.05 μg/L. In the Netherlands, imidacloprid appeared in measurable quantities in 30% of the 4,852 water samples collected between 1998 and 2007. These figures indicate there is already a widespread contamination of waterways and estuaries with persistent systemic insecticides. The first consequence of such contamination is the progressive reduction, and possible elimination, of entire populations of aquatic arthropods from the affected areas. As time is a critical variable in this type of assessment, it is envisaged that should this contamination continue at the current pace over the years to come the biodiversity and functionality of many aquatic ecosystems will be seriously compromised. Secondly, as these organisms are a primary food source of a large number of vertebrates (e.g. fish, frogs and birds), the depletion of their main food resource will inevitably have indirect impacts on the animal populations that depend on them for their own survival. The case of the partridge in England is an example of how a combination of herbicides and insecticides can bring the demise of a non-target species by indirectly suppressing its food requirements. Therefore, warnings about the possible role of environmental contamination with neonicotinoids in steeply declining populations of birds, frogs, hedgehogs, bats and other insectivorous animals are not far fetched and should be taken seriously.
Source:
Source:
Impact of Systemic Insecticides on Organisms and Ecosystems
By Francisco Sánchez-Bayo, Henk A. Tennekes and Koichi Goka (attached)
In:
Agricultural and Biological Sciences » "Insecticides - Development of Safer and More Effective Technologies", book edited by Stanislav Trdan, ISBN 978-953-51-0958-7, Published: January 30, 2013 under CC BY 3.0 license
- Login om te reageren